Engineering the earth

SMALL-SCALE GEOTHERMAL POWER FOR OFF-GRID COMMUNITIES IN INDONESIA

N. Willemsen, MSc Renewable energy consultant IF Technology, The Netherlands

Why small scale geothermal power?

Geothermal power plants are large for a reason

Mainly due to the inherent economies of scale

	200 kW binary plant	20 MW binary plant	50 MW flash plant
Exploration	300	320	240
Confirmation	400	470	370
Main wells	800	710	540
Field, other costs	120	120	60
Power plant	4,250	2,120	1,080
Contingency	880	190	120
Total costs	6,750	3,930	2,410
Source: World Bank 2005c			

Source: World Bank, 2005c.

But large power plants also require large electricity grids

And indonesia is a very large country with many small and remote islands

This leaves many relying on dirty and expensive diesel generators

With a significant share in the total power production

Even though there is often good potential for geothermal energy

This is where a small geothermal plant can be useful

What we designed: MiniGeo

- A modular geothermal powerplant fitted in a 40 foot shipping container
- base load power
- Does not need fuel
- Remote operation through sattelite link
- Near-zero marginal costs
- No CO₂ emissions
- Secondary outputs

Secondary output modules

- Drinking water (desalination or aquifer based)
- Cooling / Ice production
- Communication (Internet, mobile network, 3G/4G, Radio, Television)
- Crop drying/processing
- Waste(water) treatment
- Bathing, laundry, hotspring

But can this compete with Diesel and PV?

Lets take an example case

Example case: Input parameters

Production temperature150 °CDrilling depth2300m TVDCasing I. diameter4 InchReservoir transmissivity25 Dm

Calculating the optimal flow

CAPEX

OPEX Yearly production

LCOE (30y / 7% disc)

\$7,400,000 \$190,000 /year 4700 MWh **\$0.15 /kWh**

Example case: LCOE

Example case: Comparing to diesel and PV

Generation type	LCOE
Off-grid Diesel (1\$/I) ¹	\$0.56/kW
PV individual ²	\$0.70/kW
PV-Diesel Hybrid ²	\$0.35/kW
PV-Battery (saba case) ³	\$0.31/kW
MiniGeo	\$0.15/kW

Discussion points

- 6000 full load hours per year realistic?
- Technical challenges of high pressure and high flow
- How to organise secundary outputs?
- Risk management

Sources

1 World bank, 2005

2 PLN statistics 2009

3 Comello, s., Reichelstein, s., Sahoo, A., & Schmidt, T. (2015). Enabling mini-grid development in rural india. WORKING PAPER 4 Velthuis, MODELING AND SIMULATIONOF PHOTOVOLTAIC SYSTEMS IN INDONESIA, 2015

5 Hirsch, K., Burman, C., & Davidson, M. (2015). Sustainable energy in remote indonesian grids. *National renewable energy I laboratory,* June 2015

